Interpreting Galilean Invariant Vector Field Analysis via Extended Robustness

The topological notion of robustness introduces mathematically rigorous approaches to interpret vector field data. Robustness quantifies the structural stability of critical points with respect to perturbations and has been shown to be useful for increasing the visual interpretability of vector fields. However, critical points, which are essential components of vector field topology, are defined with respect to a chosen frame of reference. The classical definition of robustness, therefore, depends also on the chosen frame of reference. We define a new Galilean invariant robustness framework that enables the simultaneous visualization of robust critical points across the dominating reference frames in different regions of the data. We also demonstrate a strong connection between such a robustness-based framework with the one recently proposed by Bujack et al., which is based on the determinant of the Jacobian. Our results include notable observations regarding the definition of stable features within the vector field data.

Interpreting Galilean Invariant Vector Field Analysis via Extended Robustness
B Wang, R Bujack, P Rosen, P Skraba, H Bhatia, H Hagen
Topology-based Methods in Visualization (TopoInVis)

Using data indexing for remote visualization of point cloud data

We present a new approach for accessing and visualizing point-based data in CAD applications. Instead of developing a traditional database around spatial data structures, our approach augments a data indexing engine to enable quick access to data. The primary advantage of an indexing engine is flexibility. The approach enables both range queries for accessing data spatially and resolution queries to access data at appropriate spatial resolutions. Our approach is robust to very large datasets, naturally supporting remote visualization and near-real-time input data streams. We demonstrate our approach on 2 large datasets, one 45M points, the other 53M points.

Using data indexing for remote visualization of point cloud data
P Rosen, LA Piegl
Computer-Aided Design and Applications 14 (6), 789-795