LineSmooth: An Analytical Framework for Evaluating the Effectiveness of Smoothing Techniques on Line Charts

We present a comprehensive framework for evaluating line chart smoothing methods under a variety of visual analytics tasks. Line charts are commonly used to visualize a series of data samples. When the number of samples is large, or the data are noisy, smoothing can be applied to make the signal more apparent. However, there are a wide variety of smoothing techniques available, and the effectiveness of each depends upon both nature of the data and the visual analytics task at hand. To date, the visualization community lacks a summary work for analyzing and classifying the various smoothing methods available. In this paper, we establish a framework, based on 8 measures of the line smoothing effectiveness tied to 8 low-level visual analytics tasks. We then analyze 12 methods coming from 4 commonly used classes of line chart smoothing-rank filters, convolutional filters, frequency domain filters, and subsampling. The results show that while no method is ideal for all situations, certain methods, such as Gaussian filters and Topology-based subsampling, perform well in general. Other methods, such as low-pass cutoff filters and Douglas-Peucker subsampling, perform well for specific visual analytics tasks. Almost as importantly, our framework demonstrates that several methods, including the commonly used uniform subsampling, produce low-quality results, and should, therefore, be avoided, if possible.

LineSmooth: An Analytical Framework for Evaluating the Effectiveness of Smoothing Techniques on Line Charts
P. Rosen, G.J. Quadri
IEEE Transactions on Visualization and Computer Graphics (VAST 2020)

Modeling the Influence of Visual Density on Cluster Perception in Scatterplots Using Topology

Scatterplots are used for a variety of visual analytics tasks, including cluster identification, and the visual encodings used on a scatterplot play a deciding role on the level of visual separation of clusters. For visualization designers, optimizing the visual encodings is crucial to maximizing the clarity of data. This requires accurately modeling human perception of cluster separation, which remains challenging. We present a multi-stage user study focusing on 4 factors-distribution size of clusters, number of points, size of points, and opacity of points-that influence cluster identification in scatterplots. From these parameters, we have constructed 2 models, a distance-based model, and a density-based model, using the merge tree data structure from Topological Data Analysis. Our analysis demonstrates that these factors play an important role in the number of clusters perceived, and it verifies that the distance-based and density-based models can reasonably estimate the number of clusters a user observes. Finally, we demonstrate how these models can be used to optimize visual encodings on real-world data.

Modeling the Influence of Visual Density on Cluster Perception in Scatterplots Using Topology
G.J. Quadri, P. Rosen
IEEE Transactions on Visualization and Computer Graphics (InfoVis 2020)