A hybrid solution to parallel calculation of augmented join trees of scalar fields in any dimension

Scalar fields are used to describe a variety of data from photographs, to laser scans, to x-ray, CT or MRI scans of machine parts and are invaluable for a variety of tasks, such as fatigue detection in parts. Analyzing scalar fields can be quite challenging due to their size, complexity, and the need to understand both local and global details in context. Join trees are a data structure used to capture the geometric properties of scalar fields, including local minima, local maxima, and saddle points. Unfortunately, computing these trees is expensive, and their incremental construction makes parallel computation nontrivial. We introduce an approach that combines three strategies, pruning, spatial-domain parallelization, and value-domain parallelization, to parallelize join tree construction using OpenCL. The resulting implementation shows a significant speedup, making computation of trees on large data practical on even modest commodity hardware.

A hybrid solution to parallel calculation of augmented join trees of scalar fields in any dimension
P Rosen, J Tu, LA Piegl
Computer-Aided Design and Applications 15 (4), 610-618