Homology-Preserving Dimensionality Reduction via Manifold Landmarking and Tearing

Dimensionality reduction is an integral part of data visualization. It is a process that obtains a structure preserving low-dimensional representation of the high-dimensional data. Two common criteria can be used to achieve a dimensionality reduction: distance preservation and topology preservation. Inspired by recent work in topological data analysis, we are on the quest for a dimensionality reduction technique that achieves the criterion of homology preservation, a specific version of topology preservation. Specifically, we are interested in using topology-inspired manifold landmarking and manifold tearing to aid such a process and evaluate their effectiveness.

Homology-Preserving Dimensionality Reduction via Manifold Landmarking and Tearing
L Yan, Y Zhao, P Rosen, C Scheidegger, B Wang
Visualization in Data Science (VDS at IEEE VIS 2018)

A hybrid solution to parallel calculation of augmented join trees of scalar fields in any dimension

Scalar fields are used to describe a variety of data from photographs, to laser scans, to x-ray, CT or MRI scans of machine parts and are invaluable for a variety of tasks, such as fatigue detection in parts. Analyzing scalar fields can be quite challenging due to their size, complexity, and the need to understand both local and global details in context. Join trees are a data structure used to capture the geometric properties of scalar fields, including local minima, local maxima, and saddle points. Unfortunately, computing these trees is expensive, and their incremental construction makes parallel computation nontrivial. We introduce an approach that combines three strategies, pruning, spatial-domain parallelization, and value-domain parallelization, to parallelize join tree construction using OpenCL. The resulting implementation shows a significant speedup, making computation of trees on large data practical on even modest commodity hardware.

A hybrid solution to parallel calculation of augmented join trees of scalar fields in any dimension
P Rosen, J Tu, LA Piegl
Computer-Aided Design and Applications 15 (4), 610-618

Interpreting Galilean Invariant Vector Field Analysis via Extended Robustness

The topological notion of robustness introduces mathematically rigorous approaches to interpret vector field data. Robustness quantifies the structural stability of critical points with respect to perturbations and has been shown to be useful for increasing the visual interpretability of vector fields. However, critical points, which are essential components of vector field topology, are defined with respect to a chosen frame of reference. The classical definition of robustness, therefore, depends also on the chosen frame of reference. We define a new Galilean invariant robustness framework that enables the simultaneous visualization of robust critical points across the dominating reference frames in different regions of the data. We also demonstrate a strong connection between such a robustness-based framework with the one recently proposed by Bujack et al., which is based on the determinant of the Jacobian. Our results include notable observations regarding the definition of stable features within the vector field data.

Interpreting Galilean Invariant Vector Field Analysis via Extended Robustness
B Wang, R Bujack, P Rosen, P Skraba, H Bhatia, H Hagen
Topology-based Methods in Visualization (TopoInVis)

Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion

Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with a guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. We apply our method to synthetic and simulation datasets to demonstrate its effectiveness.

Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion
P Skraba, P Rosen, B Wang, G Chen, H Bhatia, V Pascucci
Transactions on Visualization and Computer Graphics

Robustness-based simplification of 2d steady and unsteady vector fields

Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness which enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory and has minimal boundary restrictions. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. We show local and complete hierarchical simplifications for steady as well as unsteady vector fields.

Robustness-based simplification of 2d steady and unsteady vector fields
P Skraba, B Wang, G Chen, P Rosen
IEEE transactions on visualization and computer graphics 21 (8), 930-944