The current generation of radio and millimeter telescopes, particularly the Atacama Large Millimeter Array (ALMA), offers enormous advances in observing capabilities. While these advances represent an unprecedented opportunity to facilitate scientific understanding, the increased complexity in the spatial and spectral structure of these ALMA data cubes lead to challenges in their interpretation. In this paper, we perform a feasibility study for applying topological data analysis and visualization techniques never before tested by the ALMA community. Through techniques based on contour trees, we seek to improve upon existing analysis and visualization workflows of ALMA data cubes, in terms of accuracy and speed in feature extraction. We review our application development process in building effective analysis and visualization capabilities for the astrophysicists. We also summarize effective design practices by identifying domain-specific needs of simplicity, integrability, and reproducibility, in order to best target and service the large astrophysics community.

Using Contour Trees in the Analysis and Visualization of Radio Astronomy Data Cubes

P Rosen, A Seth, B Mills, A Ginsburg, J Kamenetzky, J Kern, CR Johnson, B Wang

Topological Methods in Data Analysis and Visualization (TopoInVis)

# Tag: Geometry and Topology

## Mesh Learning Using Persistent Homology on the Laplacian Eigenfunctions

We use persistent homology along with the eigenfunctions of the Laplacian to study similarity amongst triangulated 2-manifolds. Our method relies on studying the lower-star filtration induced by the eigenfunctions of the Laplacian. This gives us a shape descriptor that inherits the rich information encoded in the eigenfunctions of the Laplacian. Moreover, the similarity between these descriptors can be easily computed using tools that are readily available in Topological Data Analysis. We provide experiments to illustrate the effectiveness of the proposed method.

Mesh Learning Using Persistent Homology on the Laplacian Eigenfunctions

Y Zhang, H Liu, P Rosen, M Hajij

International Geometry Summit (poster), 2019

## Inferring Quality in Point Cloud-based 3D Printed Objects using Topological Data Analysis

Assessing the quality of 3D printed models before they are printed remains a challenging problem, particularly when considering point cloud-based models. This paper introduces an approach to quality assessment, which uses techniques from the field of Topological Data Analysis (TDA) to compute a topological abstraction of the eventual printed model. Two main tools of TDA, Mapper and persistent homology, are used to analyze both the printed space and empty space created by the model. This abstraction enables investigating certain qualities of the model, with respect to print quality, and identifies potential anomalies that may appear in the final product.

Continue reading “Inferring Quality in Point Cloud-based 3D Printed Objects using Topological Data Analysis”## Homology-Preserving Dimensionality Reduction via Manifold Landmarking and Tearing

Dimensionality reduction is an integral part of data visualization. It is a process that obtains a structure preserving low-dimensional representation of the high-dimensional data. Two common criteria can be used to achieve a dimensionality reduction: distance preservation and topology preservation. Inspired by recent work in topological data analysis, we are on the quest for a dimensionality reduction technique that achieves the criterion of homology preservation, a specific version of topology preservation. Specifically, we are interested in using topology-inspired manifold landmarking and manifold tearing to aid such a process and evaluate their effectiveness.

Homology-Preserving Dimensionality Reduction via Manifold Landmarking and Tearing

L Yan, Y Zhao, P Rosen, C Scheidegger, B Wang

Visualization in Data Science (VDS at IEEE VIS 2018)

## Visual detection of structural changes in time-varying graphs using persistent homology

Topological data analysis is an emerging area in exploratory data analysis and data mining. Its main tool, persistent homology, has become a popular technique to study the structure of complex, high-dimensional data. In this paper, we propose a novel method using persistent homology to quantify structural changes in time-varying graphs. Specifically, we transform each instance of the time-varying graph into metric spaces, extract topological features using persistent homology, and compare those features over time. We provide a visualization that assists in time-varying graph exploration and helps to identify patterns of behavior within the data. To validate our approach, we conduct several case studies on real world data sets and show how our method can find cyclic patterns, deviations from those patterns, and one-time events in time-varying graphs. We also examine whether persistence-based similarity measure as a graph metric satisfies a set of well-established, desirable properties for graph metrics.

Visual detection of structural changes in time-varying graphs using persistent homology

Mustafa Hajij, Bei Wang, Carlos Scheidegger, Paul Rosen

IEEE Pacific Visualization Symposium (PacificVis) 2018

## The Shape of an Image – A Study of Mapper on Images

We study the topological construction called Mapper in the context of simply connected domains, in particular on images. The Mapper construction can be considered as a generalization for contour, split, and joint trees on simply connected domains. A contour tree on an image domain assumes the height function to be a piecewise linear Morse function. This is a rather restrictive class of functions and does not allow us to explore the topology for most real world images. The Mapper construction avoids this limitation by assuming only continuity on the height function allowing this construction to robustly deal with a significant larger set of images. We provide a customized construction for Mapper on images, give a fast algorithm to compute it, and show how to simplify the Mapper structure in this case. Finally, we provide a simple procedure that guarantees the equivalence of Mapper to contour, join, and split trees on a simply connected domain.

The Shape of an Image: A Study of Mapper on Images

Alejandro Robles, Mustafa Hajij, and Paul Rosen

International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP) 2018

## A hybrid solution to parallel calculation of augmented join trees of scalar fields in any dimension

Scalar fields are used to describe a variety of data from photographs, to laser scans, to x-ray, CT or MRI scans of machine parts and are invaluable for a variety of tasks, such as fatigue detection in parts. Analyzing scalar fields can be quite challenging due to their size, complexity, and the need to understand both local and global details in context. Join trees are a data structure used to capture the geometric properties of scalar fields, including local minima, local maxima, and saddle points. Unfortunately, computing these trees is expensive, and their incremental construction makes parallel computation nontrivial. We introduce an approach that combines three strategies, pruning, spatial-domain parallelization, and value-domain parallelization, to parallelize join tree construction using OpenCL. The resulting implementation shows a significant speedup, making computation of trees on large data practical on even modest commodity hardware.

A hybrid solution to parallel calculation of augmented join trees of scalar fields in any dimension

P Rosen, J Tu, LA Piegl

Computer-Aided Design and Applications 15 (4), 610-618

## Interpreting Galilean Invariant Vector Field Analysis via Extended Robustness

The topological notion of robustness introduces mathematically rigorous approaches to interpret vector field data. Robustness quantifies the structural stability of critical points with respect to perturbations and has been shown to be useful for increasing the visual interpretability of vector fields. However, critical points, which are essential components of vector field topology, are defined with respect to a chosen frame of reference. The classical definition of robustness, therefore, depends also on the chosen frame of reference. We define a new Galilean invariant robustness framework that enables the simultaneous visualization of robust critical points across the dominating reference frames in different regions of the data. We also demonstrate a strong connection between such a robustness-based framework with the one recently proposed by Bujack et al., which is based on the determinant of the Jacobian. Our results include notable observations regarding the definition of stable features within the vector field data.

Interpreting Galilean Invariant Vector Field Analysis via Extended Robustness

B Wang, R Bujack, P Rosen, P Skraba, H Bhatia, H Hagen

Topology-based Methods in Visualization (TopoInVis)

## Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion

Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with a guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. We apply our method to synthetic and simulation datasets to demonstrate its effectiveness.

Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion

P Skraba, P Rosen, B Wang, G Chen, H Bhatia, V Pascucci

Transactions on Visualization and Computer Graphics

## Robustness-based simplification of 2d steady and unsteady vector fields

Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness which enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory and has minimal boundary restrictions. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. We show local and complete hierarchical simplifications for steady as well as unsteady vector fields.

Robustness-based simplification of 2d steady and unsteady vector fields

P Skraba, B Wang, G Chen, P Rosen

IEEE transactions on visualization and computer graphics 21 (8), 930-944